Outline	Introduction 0000	Adaptive Penalty	Shen and Ye's proposal	Proof	Conclusion

Adaptive Linear Regression Selection

Hung Chen

Department of Mathematics Joint work with Mr. Chiuan-Fa Tang Hsu Centennial Memorial Conference at Peking University

7/07/2010

Outline	Introduction 0000	Adaptive Penalty	Shen and Ye's proposal	Proof	Conclusion

Introduction

- Objective
- Nested Linear Regression Models

2 Adaptive Penalty

- Unbiased Risk Estimate
- Generalized degrees of freedom

Outline	Introduction •୦୦୦	Adaptive Penalty 00000000	Shen and Ye's proposal	Proof	Conclusion
Objective					

 How do we get an unbiaed risk estimate (prediction error) with model selection?

My Own Curiosity

- C_p is derived to give an unbiased prediction error when a particular model M_k is used.
- The prediction error of a linear model M_k is

$$PE(\hat{\boldsymbol{eta}}_k) = E \| \mathbf{Y}^* - \mathbf{X}_k \hat{\boldsymbol{eta}}_k \|^2$$

where \boldsymbol{Y}^* comes from same distribution as \boldsymbol{Y} in the training data.

• The first local minimum Lasso coupled with C_p sets almost all $\hat{\beta}_j$ ($\beta_j = 0$) to zero except those $\hat{\beta}_j$ exceeding the threshold $|\hat{\beta}|_{(p-\hat{p}_0+1)}$ when the regressors are orthogonal. • Note that

$$\|\mathbf{y} - \hat{\mu}_k^{LS}\|^2 = \|\mathbf{y} - \hat{\mu}_k^{Lasso}\|^2 - k\frac{n}{p}\|\hat{\beta}\|_{(p-k+1)}^2.$$

Will the proposal made in Shen and Ye (2002, *JASA*) lead to Lasso estimate though least-squares estimate?

Outline	Introduction 0000	Adaptive Penalty	Shen and Ye's proposal	Proof	Conclusion
Nested Linea	r Regression Models				
Linear	[·] Regression	n Models			

Consider a linear regression model with normal error,

$$\mathbf{Y} = \boldsymbol{\mu} + \boldsymbol{\epsilon} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon},$$

where

•
$$\mathbf{X} = (\mathbf{x}_1, \dots, \mathbf{x}_p)$$
 is an $n \times p$ matrix,
• $\boldsymbol{\beta} = (\beta_1 \dots, \beta_p)^T$,
• $\boldsymbol{\mu} = (\mu_1, \dots, \mu_n)^T = \mathbf{X}\boldsymbol{\beta}$,
• $\boldsymbol{\epsilon} = (\varepsilon_1, \dots, \varepsilon_n)^T \sim N(\mathbf{0}, \sigma^2 \mathbf{I})$, and σ^2 is known.

Outline	Introduction ○0●0	Adaptive Penalty	Shen and Ye's proposal	Proof	Conclusion
Nested Linea	ar Regression Models				
Neste	d Models				

We only consider the nested linear competing model

$$\{M_k, k=0,\ldots,p\}.$$

- Lasso leads to a data-driven nested models.
- For model M_k , $\beta_j \neq 0$ for $j \leq k$ and $\beta_j = 0$ for j > k.
- β 's are estimated by the least square method and
- μ is estimated by

$$\hat{\boldsymbol{\mu}}_{M_k} = P_{M_k} \mathbf{Y},$$

where P_{M_k} is the projection matrix corresponding to model M_k .

• Its residual sum of squares is defined as

$${\it RSS}(M_k) = \left(\mathbf{Y} - \hat{oldsymbol{\mu}}_{M_k}
ight)^{{\it T}} \left(\mathbf{Y} - \hat{oldsymbol{\mu}}_{M_k}
ight).$$

Outline	Introduction ○○○●	Adaptive Penalty 000000000	Shen and Ye's proposal	Proof	Conclusion
Nested Linear	Regression Models				
Model	Selection				

If AIC (Mallows' C_p) is used to score models, we choose the model \hat{M} by minimizing

$$RSS(M_k) + 2|M_k|\sigma^2$$

with respect to all competing models $\{M_k, k = 0, \ldots, p\}$, where $|M_k|$ is the size of M_k .

Note that

- It does not include the random error introduced in model selection procedure.
- What can be done?
 - Refer to the proposal in Shen and Ye (2002).

Outline	Introduction 0000	Adaptive Penalty	Shen and Ye's proposal	Proof	Conclusion
Unbiased Ris	sk Estimate				
Unbia	sed risk es	timate			

Define the loss function

$$\ell\left(\boldsymbol{\mu}, \hat{\boldsymbol{\mu}}_{\hat{M}}\right) = \frac{1}{n} (\boldsymbol{\mu} - \hat{\boldsymbol{\mu}}_{\hat{M}})^{\mathsf{T}} (\boldsymbol{\mu} - \hat{\boldsymbol{\mu}}_{\hat{M}}) + \sigma^{2}$$

and the **risk** is

$$\mathsf{E}\left[\ell(\boldsymbol{\mu}, \hat{\boldsymbol{\mu}}_{\hat{M}})
ight] = \mathsf{E}\left[rac{1}{n}(\boldsymbol{\mu}-\hat{\boldsymbol{\mu}}_{\hat{M}})^{\mathcal{T}}(\boldsymbol{\mu}-\hat{\boldsymbol{\mu}}_{\hat{M}})+\sigma^{2}
ight],$$

where

$$\hat{\mu}_{\hat{M}} = \sum_{k=0}^{p} \hat{\mu}_{M_{k}} \cdot \mathbf{1}_{\{\hat{M}=k\}} = \sum_{k=0}^{p} P_{M_{k}} \mathbf{Y} \cdot \mathbf{1}_{\{\hat{M}=k\}}$$

Outline	Introduction 0000	Adaptive Penalty ○●೦೦೦೦೦೦೦	Shen and Ye's proposal	Proof	Conclusion		
Generalized degrees of freedom							
Gener	alized degr	rees of freedo	om				

Define $\hat{M}(\lambda)$ to be the minimizer of

 $RSS(M_k) + \lambda |M_k| \sigma^2$

with respect to all competing models $\{M_k, k = 0, ..., p\}$. Note that

$$\frac{1}{n}\left\{RSS(\hat{M}(\lambda))+2E[\varepsilon^{T}(\hat{\mu}_{\hat{M}(\lambda)}-\mu)]\right\}$$

are **unbiased risk estimator** for each $\lambda > 0$. Define

$$g_0(\lambda) = rac{2}{\sigma^2} E\left[\epsilon^T (\hat{\mu}_{\hat{M}(\lambda)} - \mu)
ight].$$

g₀(λ)/2 is defined as the generalized degrees of freedom (GDF) by Ye (1998, JASA).

Outline	Introductio		
	0000		

Adaptive Penalty

Conclusion

Generalized degrees of freedom

Shen and Ye's proposal (2002, JASA)

Shen and Ye (2002) proposed to choose $\lambda > 0$ to minimize the unbiased risk estimator

$$\hat{\lambda} = \operatorname{argmin}_{\lambda > 0} \left\{ \operatorname{\textit{RSS}}(\hat{M}(\lambda)) + g_0(\lambda)\sigma^2
ight\}.$$

The resulting selected model is $\hat{M}(\hat{\lambda})$.

As an attempt to understand their proposal, consider the situation

- BIC is consistent (no underfitting).
- nested competing models
- $\lambda \in [0, \log n]$

ls

$$\hat{M}(\hat{\lambda}) = \hat{M}(\log n) = M_{k_0}$$

or $\hat{\lambda} = \log n$?

Outline	Introduction 0000	Adaptive Penalty ○00●00000	Shen and Ye's proposal	Proof	Conclusion		
Generalized degrees of freedom							
Assum	ptions: Bl	C is consiste	nt				

Recall that p_0 is the number of covariates in the true model. Assume that

Assumption B1. There exists a constant c > 0 such that $\mu^{T}(\mathbf{I} - \mathbf{P}_{M_{k}})\mu \geq cn$ for all $k < p_{0}$, where

$$\boldsymbol{\mu} = \mathbf{X}_{p_0}(\beta_1, \ldots, \beta_{p_0})^T$$

is the mean vector of the true model.

Assumption B2. The simple size *n* is large enough such that $cn > 2p_0 \log n$.

Assumption N. log $n > 2 \log(p - p_0)$.

Outline	Introduction 0000	Adaptive Penalty 000000000	Shen and Ye's proposal	Proof	Conclusion
Generalized	degrees of freedom				
Set-u	D				

Assume $\epsilon \sim N(\mathbf{0}, \mathbf{I})$.

- Note that $RSS(p_0) RSS(p_0 + 1)$, $RSS(p_0 + 1)$ $-RSS(p_0 + 2)$, ..., RSS(p - 1) - RSS(p) consists of a sequence of iid random variables with χ_1^2 distribution.
- Write $RSS(p_0+j-1)-RSS(p_0+j)$ as V_j where $V_j\sim\chi_1^2$ and

$$C(k,\lambda) = \epsilon^T \epsilon - \delta_k(\lambda) = RSS(M_k) + \lambda k, \ k = p_0, \dots, p_k$$

where $\delta_k(\lambda) = \epsilon^T P_k \epsilon - \lambda k$.

- Consider the minimizer of $C(M_{p_0+j},\lambda)$ over $0 \le j \le p p_0$.
 - Define a partial sum process with drift $\lambda-1$

$$S_j(\lambda) = \sum_{k=1}^j (-V_k + \lambda)$$
 and $S_0(\lambda) = 0$

Find ĵ to achieve the minimum of {S_j(λ), 0 ≤ j ≤ p − p₀}.
Where the minimum should occur when λ = 2? at the very beginning or at the end

Outline	Introduction 0000	Adaptive Penalty ○○○○○●○○○	Shen and Ye's proposal	Proof	Conclusion		
Generalized degrees of freedom							
Deter	mine $g_0(\lambda)$						

It follows from the results of Spitzer (1956), Woodroofe (1982) and Zhang (1992) that, for all $\lambda \in [0, \log n]$,

$$g_0(\lambda) = 2 \sum_{j=1}^{p-p_0} \left[P(\chi_{j+2}^2 > j\lambda) \right] + 2p_0$$

Note that

- $g_0(\lambda)$ is strictly decreasing.
- $g_0(0) = 2p$.
- $g_0(\log n) \rightarrow 2p_0$ as $n \rightarrow \infty$.

Outline	Introduction 0000	Adaptive Penalty 000000000	Shen and Ye's proposal	Proof	Conclusion
Generalized	degrees of freedom				

AMS improves.

Consider a simulation study with $p_0 = 0$, $p - p_0 = 20$, n = 404 (log n = 6), and $\sigma^2 = 1$. The black points are $RSS(\hat{M}(\lambda)) - RSS(M_{p_0})$ and the blue points are $RSS(\hat{M}(\lambda)) + g_0(\lambda) - RSS(M_{p_0})$.

4

λ

6

8

2

0

K-k_0=20

Outline	Introduction 0000	Adaptive Penalty ○000000●0	Shen and Ye's proposal	Proof	Conclusion
Generalized o	legrees of freedom				
1140			с. <u>р</u>		

AMS may not work but how often?

K-k_0=20

λ

Outline	Introduction	Adaptive Penalty	Shen and Ye's proposal	Proof	Conclusion
	0000	00000000			

Generalized degrees of freedom

Probability of correct selection:

$\hat{M}(\hat{\lambda}) = M_{P_0+}$	[0, log <i>n</i>]	[0.5, log <i>n</i>]	[1, log <i>n</i>]	[1.5, log <i>n</i>]	[2, log <i>n</i>]
0	0.5457	0.5457	0.5457	0.6483	0.7539
1	0.0565	0.0565	0.0565	0.0681	0.0807
2	0.0312	0.0312	0.0312	0.0386	0.0474
3	0.0262	0.0262	0.0262	0.0320	0.0348
4	0.0239	0.0239	0.0239	0.0283	0.0249
5	0.0188	0.0188	0.0188	0.0227	0.0166
6	0.0156	0.0156	0.0156	0.0190	0.0103
7	0.0134	0.0134	0.0134	0.0169	0.0071
8	0.0136	0.0136	0.0136	0.0157	0.0051
9	0.0140	0.0140	0.0140	0.0151	0.0041
10	0.0155	0.0155	0.0155	0.0132	0.0039
11	0.0155	0.0155	0.0155	0.0107	0.0022
12	0.0153	0.0153	0.0153	0.0106	0.0018
13	0.0163	0.0163	0.0163	0.0097	0.0018
14	0.0177	0.0177	0.0177	0.0080	0.0015
15	0.0185	0.0185	0.0185	0.0074	0.0012
16	0.0210	0.0210	0.0210	0.0070	0.0008
17	0.0242	0.0242	0.0242	0.0074	0.0005
18	0.0212	0.0212	0.0212	0.0069	0.0006
19	0.0307	0.0307	0.0307	0.0065	0.0005
20	0.0452	0.0452	0.0452	0.0079	0.0003

Outline	Introductio		
	0000		

Adaptive Penalty

Need a detailed description of $g_0(\lambda)$

Recall

$$\hat{\lambda} = \min_{\lambda>0} \{\lambda : RSS(\hat{M}(\lambda)) + g_0(\lambda)\}$$

and choose model $\hat{M}(\hat{\lambda})$ which retains the first $\hat{j}(\hat{\lambda})$ predictors.

- When $\lambda = 0$, $|\hat{M}(0)| = p$ for all realizations and $RSS(\hat{M}(0)) = \mathbf{Y}^T (\mathbf{I} \mathbf{P}_p) \mathbf{Y}$. Then $g_0(0) = 2p$.
- When $\lambda = \ln n$, $|\hat{M}(\ln n)| = p_0$ for almost all realizations and $RSS(\hat{M}(\ln n)) = \mathbf{Y}^T (\mathbf{I} \mathbf{P}_{p_0}) \mathbf{Y}$. Then $g_0(\ln n) = 2p_0$.

Note that

$$\left[RSS(\hat{M}(0)) + 2p\sigma^{2}\right] - \left[RSS(\hat{M}(\ln n)) + 2p_{0}\sigma^{2}\right] = \sigma^{2}\sum_{k=1}^{p-p_{0}} (2-V_{k})$$

which is greater than 0 with probability close to 1 when $p - p_0$ is large.

Outline	Introduction 0000	Adaptive Penalty 000000000	Shen and Ye's proposal	Proof	Conclusion
Estima	ate $g_0(\lambda)$ v	when $\lambda = 2$			

Consider the case that $p - p_0 = 20$.

- For one realization, we have 2 observations 4.7 and 7.2 which are greater than 2. (i.e. $V_1 = 4.7$ and $V_{14} = 7.2$.)
- Minimum of random process $\{S_j(2), 0 \le j \le 20\}$ occurs at $\hat{j}(2) = 1$ for this realization.
 - Include one extra predictor x_{p_0+1} . (Note that $S_0(2) = 0$.)
- Let $N(\lambda)$ denote the number of V_j which are greater than λ .
 - Note that $N(2) \sim Bin(20, 0.1573)$
- $S_j(2)$: positive drift
 - $\hat{j}(2)$ cannot be large.

AMS improves when $\lambda \geq 2$.

Adaptive selection over $\lambda \in [0, 0.5] \cup \{\log n\}$

Show that $\hat{\lambda} = \log n$ with probability close to 1 by finding a bound on the following probability.

$$P\left(RSS(\hat{j}(\lambda)) + g_0(\lambda) < RSS(\hat{j}(\ln n)) + g_0(\ln n) \text{ for all } \lambda \in [0, 0.5]\right).$$

Note that

$$\begin{split} & P\left(V_1 + \dots + V_{\hat{j}(\lambda)} < g_0(\lambda) \text{ for all } \lambda \in [0.0.5]\right) \\ & \geq P\left(V_1 + \dots + V_{p-p_0} < g_0(0) - 4\right) \\ & = P\left(V_1 + \dots + V_{p-p_0} < 2(p-p_0) - 4\right). \end{split}$$

Note that

- $g_0(\lambda)$ is strickly decreasing and continuous on $\lambda \in [0, \ln n]$.
- For all $g_0(\ln n) < \delta \le g_0(0)$, there exists a unique λ_{δ} such that $g_0(\lambda_{\delta}) = g_0(0) \delta$.
- Claim: When $\delta = 4$, $0.5 \leq \lambda_{\delta}$.

Outline	Introduction 0000	Adaptive Penalty 000000000	Shen and Ye's proposal	Proof	Conclusion
When	$\delta=$ 4, 0.5	$\leq \lambda_{\delta}.$			

Need to prove that, for given $\lambda < 1$,

$$P\left(\sum_{j=1}^{i+2}V_j>i\lambda
ight)
ightarrow 1$$
 for i large enough.

Then

$$g_0(0.5) \approx \sum_{j=1}^{20} P\left(\sum_{j=1}^{i+2} V_j > i\lambda\right) + ((p-p_0)-20).$$

Outline	Introduction 0000	Adaptive Penalty	Shen and Ye's proposal	Proof	Conclusion
Cont.					

Theorem 1 in Teicher(1984)

• Let Y_j be independent random variables with $E[Y_j] = 0$, $E[Y_j^2] = \sigma_j^2$ and $E|Y_j|^k \le k! c_2^{k-2} \sigma_j^2/2$, for all $k \ge 3$ and some $c_2 > 0$.

• Define
$$S_n = \sum_{j=1}^n a_{nj} Y_j$$
 where a_{nj} are arbitrary constants.

• Set
$$v_n^2 = \sum_{j=1}^n a_{nj}^2 \sigma_j^2$$
 and $c_n = c_2 \max_{1 \le j \le n} |a_{nj}|$.

Then, for x > 0,

$$P(S_n > xv_n) \le \exp\left\{\frac{-x^2}{2}\left(1 + \frac{c_n x}{v_n}\right)^{-1}\right\}$$

In our case, $Y_j = V_j - 1$, $E[Y_j] = 0$, and $E[Y_j]^2 = \sigma_j^2 = 2$. It follows from Lemma 5 in Henry Teicher(1984) that $E|Y_j|^k = E|V_j - 1|^k \le k!2^{k-2}$ for all $k \ge 3$

Outline	Introduction 0000	Adaptive Penalty	Shen and Ye's proposal	Proof	Conclusion
-					

Cont. $p - p_0 > 20$

For
$$\lambda = 0.5$$
, $c(0.5) = 0.9207$,

$$2\left(\sum_{i=1}^{20} P\left(\sum_{j=1}^{i+2} V_j > i\lambda\right) + ((p-p_0) - 20)\right) - g_0(\lambda)$$

$$\leq 2\left(\sum_{i=21}^{p-p_0} P\left(\sum_{j=1}^{i+2} V_j \le i\lambda\right)\right) \le 2\left(\sum_{i=21}^{\infty} P\left(\sum_{j=1}^{i+2} V_j \le i\lambda\right)\right)$$

$$\leq 2 \cdot c(0.5) \frac{\exp\{-(21+2)(1-\lambda)^2/12\}}{1 - \exp\{-(1-\lambda)^2/12\}} = 1.2186.$$

Moreover,

$$2\sum_{i=1}^{20} P\left(\sum_{j=1}^{i+2} V_j \le i\lambda\right) = 38.1684 = 40 - 1.8316.$$

We conclude that 1.8316 + 1.2186 = 3.0502 < 4 and $g_0(0.5) > 2(n - n_0) - 4$ for $n - n_0 > 20$ $(P(\chi^2_{20} > 40) = 0.0050)$

Outline	Introduction 0000	Adaptive Penalty	Shen and Ye's proposal	Proof	Conclusion
Simul	ation of {S	$S_k(1.5)\}$			

Outline	Introduction 0000	Adaptive Penalty	Shen and Ye's proposal	Proof	Conclusion
Simul	ation of {S	$S_k(1.4)$			

Outline	Introduction 0000	Adaptive Penalty	Shen and Ye's proposal	Proof	Conclusion
Simul	ation of $\{S$	$S_k(1.3)\}$			

Outline	Introduction 0000	Adaptive Penalty	Shen and Ye's proposal	Proof	Conclusion
Simul	ation of $\{S$	$S_k(1.2)\}$			

Outline	Introduction 0000	Adaptive Penalty	Shen and Ye's proposal	Proof	Conclusion
Simul	ation of {S	$S_k(1.1)\}$			

Outline	Introduction 0000	Adaptive Penalty	Shen and Ye's proposal	Proof	Conclusion
Simul	ation of $\{S$	$S_k(1.0)\}$			

 $\lambda = 1.0$

Outline	Introduction 0000	Adaptive Penalty	Shen and Ye's proposal	Proof	Conclusion
Simul	ation of $\{S$	$S_k(0.8)\}$			

Outline	Introduction 0000	Adaptive Penalty	Shen and Ye's proposal	Proof	Conclusion
Simul	ation of {S	$S_k(0.7)$			

Outline	Introduction 0000	Adaptive Penalty	Shen and Ye's proposal	Proof	Conclusion
Concl	usion				

- When λ ∈ (2, log n], there are about 75% to choose the true model.
- The probability of selecting correct model decreases to 55% if $\lambda \in [1,2) \cup [2, \log n]$.
- For the region of λ are [0, log n], ∈ [0.5, log n], or n[1, log n], there are no differences in the probability of correct selection.
 - We still cannot provide a good interpretation.