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Objective

My Own Curiosity

How do we get an unbiaed risk estimate (prediction error)
with model selection?

Cp is derived to give an unbiased prediction error when a
particular model Mk is used.
The prediction error of a linear model Mk is

PE (β̂k) = E∥Y∗ − Xk β̂k∥2

where Y∗ comes from same distribution as Y in the training
data.

The first local minimum Lasso coupled with Cp sets almost all

β̂j (βj = 0) to zero except those β̂j exceeding the threshold

|β̂|(p−p̂0+1) when the regressors are orthogonal.
Note that

∥y − µ̂LS
k ∥2 = ∥y − µ̂Lasso

k ∥2 − k
n

p
∥β̂|2(p−k+1).

Will the proposal made in Shen and Ye (2002, JASA) lead to
Lasso estimate though least-squares estimate?
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Nested Linear Regression Models

Linear Regression Models

Consider a linear regression model with normal error,

Y = µ+ ϵ = Xβ + ϵ,

where

X = (x1, . . . , xp) is an n × p matrix,

β = (β1 . . . , βp)
T ,

µ = (µ1, . . . , µn)
T = Xβ,

ϵ = (ε1, . . . , εn)
T ∼ N(0, σ2I), and σ2 is known.
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Nested Linear Regression Models

Nested Models

We only consider the nested linear competing model

{Mk , k = 0, . . . , p}.

Lasso leads to a data-driven nested models.

For model Mk , βj ̸= 0 for j ≤ k and βj = 0 for j > k.

β’s are estimated by the least square method and

µ is estimated by
µ̂Mk

= PMk
Y,

where PMk
is the projection matrix corresponding to model

Mk .

Its residual sum of squares is defined as

RSS(Mk) =
(
Y − µ̂Mk

)T (
Y − µ̂Mk

)
.
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Nested Linear Regression Models

Model Selection

If AIC (Mallows’ Cp) is used to score models, we choose the model
M̂ by minimizing

RSS(Mk) + 2|Mk |σ2

with respect to all competing models {Mk , k = 0, . . . , p}, where
|Mk | is the size of Mk .
Note that

It does not include the random error introduced in model
selection procedure.

What can be done?

Refer to the proposal in Shen and Ye (2002).
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Unbiased Risk Estimate

Unbiased risk estimate

Define the loss function

ℓ
(
µ, µ̂M̂

)
=

1

n
(µ− µ̂M̂)T (µ− µ̂M̂) + σ2

and the risk is

E
[
ℓ(µ, µ̂M̂)

]
= E

[
1

n
(µ− µ̂M̂)T (µ− µ̂M̂) + σ2

]
,

where

µ̂M̂ =

p∑
k=0

µ̂Mk
· 1{M̂=k} =

p∑
k=0

PMk
Y · 1{M̂=k}.
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Generalized degrees of freedom

Generalized degrees of freedom

Define M̂(λ) to be the minimizer of

RSS(Mk) + λ|Mk |σ2

with respect to all competing models {Mk , k = 0, . . . , p}. Note
that

1

n

{
RSS(M̂(λ)) + 2E [εT (µ̂M̂(λ) − µ)]

}
are unbiased risk estimator for each λ > 0. Define

g0(λ) =
2

σ2
E
[
ϵT (µ̂M̂(λ) − µ)

]
.

g0(λ)/2 is defined as the generalized degrees of freedom
(GDF) by Ye (1998, JASA).
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Generalized degrees of freedom

Shen and Ye’s proposal (2002, JASA)

Shen and Ye (2002) proposed to choose λ > 0 to minimize the
unbiased risk estimator

λ̂ = argminλ>0

{
RSS(M̂(λ)) + g0(λ)σ

2
}
.

The resulting selected model is M̂(λ̂).
As an attempt to understand their proposal, consider the situation

BIC is consistent (no underfitting).

nested competing models

λ ∈ [0, log n]

Is
M̂(λ̂) = M̂(log n) = Mk0

or λ̂ = log n?
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Generalized degrees of freedom

Assumptions: BIC is consistent

Recall that p0 is the number of covariates in the true model.
Assume that

Assumption B1. There exists a constant c > 0 such that
µT (I− PMk

)µ ≥ cn for all k < p0, where

µ = Xp0(β1, . . . , βp0)
T

is the mean vector of the true model.

Assumption B2. The simple size n is large enough such that
cn > 2p0 log n.

Assumption N. log n > 2 log(p − p0).
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Generalized degrees of freedom

Set-up

Assume ϵ ∼ N(0, I).

Note that RSS(p0)− RSS(p0 + 1), RSS(p0 + 1)
−RSS(p0 + 2), . . ., RSS(p − 1)− RSS(p) consists of a
sequence of iid random variables with χ2

1 distribution.

Write RSS(p0+ j − 1)−RSS(p0+ j) as Vj where Vj ∼ χ2
1 and

C (k, λ) = ϵTϵ− δk(λ) = RSS(Mk) + λk, k = p0, . . . , p,

where δk(λ) = ϵTPkϵ− λk.
Consider the minimizer of C (Mp0+j , λ) over 0 ≤ j ≤ p − p0.

Define a partial sum process with drift λ− 1

Sj(λ) =

j∑
k=1

(−Vk + λ) and S0(λ) = 0

Find ĵ to achieve the minimum of {Sj(λ), 0 ≤ j ≤ p − p0}.
Where the minimum should occur when λ = 2?
at the very beginning or at the end
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Generalized degrees of freedom

Determine g0(λ).

It follows from the results of Spitzer (1956), Woodroofe (1982)
and Zhang (1992) that, for all λ ∈ [0, log n],

g0(λ) = 2

p−p0∑
j=1

[
P(χ2

j+2 > jλ)
]
+ 2p0.

Note that

g0(λ) is strictly decreasing.

g0(0) = 2p.

g0(log n) → 2p0 as n → ∞.
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Generalized degrees of freedom

AMS improves.

Consider a simulation study with p0 = 0, p − p0 = 20, n = 404
(log n = 6), and σ2 = 1.
The black points are RSS(M̂(λ))− RSS(Mp0) and the blue points
are RSS(M̂(λ)) + g0(λ)− RSS(Mp0).
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Generalized degrees of freedom

AMS may not work but how often?

0 1 2 3 4 5

80
90

100
110

K k_0=20

G



Outline
. . . .
Introduction

. . . . . . . . .
Adaptive Penalty Shen and Ye’s proposal Proof Conclusion

Generalized degrees of freedom

Probability of correct selection:

M̂(λ̂) = Mp0+ [0, log n] [0.5, log n] [1, log n] [1.5, log n] [2, log n]
0 0.5457 0.5457 0.5457 0.6483 0.7539
1 0.0565 0.0565 0.0565 0.0681 0.0807
2 0.0312 0.0312 0.0312 0.0386 0.0474
3 0.0262 0.0262 0.0262 0.0320 0.0348
4 0.0239 0.0239 0.0239 0.0283 0.0249
5 0.0188 0.0188 0.0188 0.0227 0.0166
6 0.0156 0.0156 0.0156 0.0190 0.0103
7 0.0134 0.0134 0.0134 0.0169 0.0071
8 0.0136 0.0136 0.0136 0.0157 0.0051
9 0.0140 0.0140 0.0140 0.0151 0.0041
10 0.0155 0.0155 0.0155 0.0132 0.0039
11 0.0155 0.0155 0.0155 0.0107 0.0022
12 0.0153 0.0153 0.0153 0.0106 0.0018
13 0.0163 0.0163 0.0163 0.0097 0.0018
14 0.0177 0.0177 0.0177 0.0080 0.0015
15 0.0185 0.0185 0.0185 0.0074 0.0012
16 0.0210 0.0210 0.0210 0.0070 0.0008
17 0.0242 0.0242 0.0242 0.0074 0.0005
18 0.0212 0.0212 0.0212 0.0069 0.0006
19 0.0307 0.0307 0.0307 0.0065 0.0005
20 0.0452 0.0452 0.0452 0.0079 0.0003
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Need a detailed description of g0(λ)

Recall
λ̂ = min

λ>0
{λ : RSS(M̂(λ)) + g0(λ)}

and choose model M̂(λ̂) which retains the first ĵ(λ̂) predictors.

When λ = 0, |M̂(0)| = p for all realizations and
RSS(M̂(0)) = YT (I− Pp)Y. Then g0(0) = 2p.

When λ = ln n, |M̂(ln n)| = p0 for almost all realizations and
RSS(M̂(ln n)) = YT (I− Pp0)Y. Then g0(ln n) = 2p0.

Note that[
RSS(M̂(0)) + 2pσ2

]
−
[
RSS(M̂(ln n)) + 2p0σ

2
]
= σ2

p−p0∑
k=1

(2−Vk)

which is greater than 0 with probability close to 1 when p − p0 is
large.
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Estimate g0(λ) when λ = 2

Consider the case that p − p0 = 20.

For one realization, we have 2 observations 4.7 and 7.2 which
are greater than 2. (i.e. V1 = 4.7 and V14 = 7.2.)

Minimum of random process {Sj(2), 0 ≤ j ≤ 20} occurs at

ĵ(2) = 1 for this realization.

Include one extra predictor xp0+1. (Note that S0(2) = 0.)

Let N(λ) denote the number of Vj which are greater than λ.

Note that N(2) ∼ Bin(20, 0.1573)

Sj(2): positive drift

ĵ(2) cannot be large.

AMS improves when λ ≥ 2.



Outline
. . . .
Introduction

. . . . . . . . .
Adaptive Penalty Shen and Ye’s proposal Proof Conclusion

Adaptive selection over λ ∈ [0, 0.5] ∪ {log n}
Show that λ̂ = log n with probability close to 1 by finding a bound
on the following probability.

P
(
RSS (̂j(λ)) + g0(λ) < RSS (̂j(ln n)) + g0(ln n) for all λ ∈ [0, 0.5]

)
.

Note that

P
(
V1 + · · ·+ Vĵ(λ) < g0(λ) for all λ ∈ [0.0.5]

)
≥ P (V1 + · · ·+ Vp−p0 < g0(0)− 4)

= P (V1 + · · ·+ Vp−p0 < 2(p − p0)− 4) .

Note that

g0(λ) is strickly decreasing and continuous on λ ∈ [0, ln n].

For all g0(ln n) < δ ≤ g0(0), there exists a unique λδ such
that g0(λδ) = g0(0)− δ.

Claim: When δ = 4, 0.5 ≤ λδ.
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When δ = 4, 0.5 ≤ λδ.

Need to prove that, for given λ < 1,

P

 i+2∑
j=1

Vj > iλ

 → 1 for i large enough.

Then

g0(0.5) ≈
20∑
j=1

P

 i+2∑
j=1

Vj > iλ

+ ((p − p0)− 20).



Outline
. . . .
Introduction

. . . . . . . . .
Adaptive Penalty Shen and Ye’s proposal Proof Conclusion

Cont.

Theorem 1 in Teicher(1984)

Let Yj be independent random variables with E [Yj ] = 0,

E [Y 2
j ] = σ2

j and E |Yj |k ≤ k!ck−2
2 σ2

j /2, for all k ≥ 3 and
some c2 > 0.

Define Sn =
∑n

j=1 anjYj where anj are arbitarary constants.

Set v2
n =

∑n
j=1 a

2
njσ

2
j and cn = c2 max1≤j≤n |anj |.

Then, for x > 0,

P(Sn > xvn) ≤ exp

{
−x2

2

(
1 +

cnx

vn

)−1
}
.

In our case, Yj = Vj − 1, E [Yj ] = 0, and E [Yj ]
2 = σ2

j = 2.
It follows from Lemma 5 in Henry Teicher(1984) that
E |Yj |k = E |Vj − 1|k ≤ k!2k−2 for all k ≥ 3
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Cont. p − p0 > 20

For λ = 0.5, c(0.5) = 0.9207,

2

 20∑
i=1

P

 i+2∑
j=1

Vj > iλ

+ ((p − p0)− 20)

− g0(λ)

≤ 2

p−p0∑
i=21

P

 i+2∑
j=1

Vj ≤ iλ

 ≤ 2

 ∞∑
i=21

P

 i+2∑
j=1

Vj ≤ iλ


≤ 2 · c(0.5)exp{−(21 + 2)(1− λ)2/12}

1− exp{−(1− λ)2/12}
= 1.2186.

Moreover,

2
20∑
i=1

P

 i+2∑
j=1

Vj ≤ iλ

 = 38.1684 = 40− 1.8316.

We conclude that 1.8316 + 1.2186 = 3.0502 < 4 and
g0(0.5) > 2(p − p0)− 4 for p − p0 > 20. (P(χ2

20 > 40) = 0.0050
and P(χ2

20 > 36) = 0.0154)



Outline
. . . .
Introduction

. . . . . . . . .
Adaptive Penalty Shen and Ye’s proposal Proof Conclusion

Simulation of {Sk(1.5)}
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Simulation of {Sk(1.4)}
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Simulation of {Sk(1.3)}
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Simulation of {Sk(1.2)}
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Simulation of {Sk(1.1)}
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Simulation of {Sk(1.0)}
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Simulation of {Sk(0.9)}
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Simulation of {Sk(0.8)}
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Simulation of {Sk(0.7)}
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Simulation of {Sk(0.6)}
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Simulation of {Sk(0.5)}
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Conclusion

When λ ∈ (2, log n], there are about 75% to choose the true
model.

The probability of selecting correct model decreases to 55% if
λ ∈ [1, 2) ∪ [2, log n].

For the region of λ are [0, log n], ∈ [0.5, log n], or n[1, log n],
there are no differences in the probability of correct selection.

We still cannot provide a good interpretation.
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